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Transformation of general astigmatic Gaussian beams in a
four-dimensional phase space
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A phase space model of two-dimensional (2D) Gaussian beam propagation is generalized for three-
dimensional (3D) general astigmatic Gaussian beam passing through first-order optical system. The
general astigmatic Gaussian beam is represented by a four-dimensional (4D) phase super-ellipsoid that
defined by an associated 4× 4 real matrix, then the transformation formula of the phase super-ellipsoid of
the beam through first-order optical system is derived. In particular, in the phase space framework, the
beam propagation factor M2 value is proved to be a ratio of phase area of real beam to ideal beam, and
a novel approach for a qualitative examination of the properties of fractional Fourier transform (FRT) for
the beam is also provided.
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The phase space model for propagation of two-
dimensional (2D) Gaussian beams has been proposed
some time ago[1,2]. According to this model, the prop-
agation of Gaussian beams is represented by a trans-
formation of the phase ellipse associated a positive real
symmetric 2 × 2 beam matrix in the phase plane. How-
ever, the actual case of light beam propagation is a three-
dimensional (3D) problem (two transversal dimensions x,
y, and one axial dimension z) and most of the Gaussian
beams exhibit partially coherent and astigmatic charac-
teristics. The Collett-Wolf source, for instance, is typ-
ical source that emits partially coherent Gaussian-Shell
model (GSM) beams[3]. GSM beams and later twisted
GSM beams have attracted particular interest because
such beams not only can be analyzed theoretically[4−13]

but can also be constructed in the laboratory[14]. In the
theoretical aspect, the Wigner distribution function is
widely used to treat the propagation and imaging of both
twisted and non-twisted GSM beams[7−11]. Therefore, in
the general case, 2D phase space model for transmission
of Gaussian beam or simple astigmatic Gaussian beam
can be generalized in 3D to fully characterize the most
general astigmatic beam (coherent or incoherent) propa-
gation with ten physical parameters.

In this letter, we propose four-dimensional (4D) phase
space transformation for general astigmatic beam (co-
herent or incoherent) propagating through a first-order
optical system by employing the Liouville theorem in op-
tics derived from the Fermat’s principle[1]. The general
astigmatic (or anisotropic) beam is fully characterized by
a 4×4 real symmetric matrix σ, which may be called the
generalized phase space beam matrix. Then the transfor-
mation law of σ through a first-order optical system is
derived. It is shown that σ-transformation recovers the
second-moments transformation law by using the method
of the Wigner distribution. In particular, within the
framework of phase space picture, the beam propagation
factor M2 value gives a measure of “how many times of
phase area of the ideal beam” is the phase area of the real
beam in each phase space corresponding to each trans-
verse direction, also a novel approach for a qualitative

examination of the properties of fractional Fourier trans-
form (FRT) for the general astigmatic Gaussian beam is
provided.

We consider a paraxial general astigmatic Gaussian
beam traveling along z axis, denoted with x and y, the
small displacements in the two directions transverse to
the beam direction at distance along the optic axis. From
the statistical non-wave viewpoint, propagation of a light
ray, like the motion of a particle in classical mechanics,
can be fully depicted by its Hamilton canonical equation.
Naturally, a general astigmatic Gaussian beam consisting
of a number of rays similar to a group of particles in clas-
sical statistics can also be represented by a phase space
volume. The position of a light ray and its “momentum”
can construct a 4D phase space in which a ray is repre-
sented by a point, this phase representative point moves
in the phase space as the light ray travels in real space
guided by Hamilton canonical equation. A general astig-
matic Gaussian beam with limited width and slope range
occupies a limited volume in the phase space, the vol-
ume moves with varying shape in phase space while the
beam propagates through a first-order optical system.
Following the evolution of the volume in phase space we
get the information about the beam in real space. Liou-
ville theorem states that the volume in the phase space
(X, P ) is conserved during the beam propagation. Here,
X = [x y], P = [ndx/dz ndy/dz][1] and n is the refrac-
tive index of the material where the beam propagating.
For simplicity, we assume that n = 1 in the following.

In order to extend the formalism of 2D phase ellipse in
the (x, x′) phase plane to the 3D case, we must define a
4D phase super-ellipsoid in the (X, X ′) phase space as

[X X ′]σ−1[X X ′]T = 1, (1)

where X ′ = [x′ y′] and x′ = dx/dz, y′ = dy/dz, the
superscript T means transposition, σ defines the gen-
eralized phase space beam matrix of general astigmatic
Gaussian beam which can be written as

σ =
[

σ1 σ2

σ3 σ4

]
,
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σ1 =
[

σxx σxy

σyx σyy

]
, σ2 =

[
σxx′ σxy′

σyx′ σyy′

]
,

σ3 =
[

σx′x σx′y
σy′x σy′y

]
, σ4 =

[
σx′x′ σx′y′

σy′x′ σy′y′

]
, (2)

where, by symmetry consideration, σ1 = σ1
T , σ3 = σ2

T

and σ4 = σ4
T , σ1 is a transverse spot width matrix and

σ4 is a divergence angle matrix, while σ2 is a coupling
matrix. Generally, σ1 and σ4 contain three real parame-
ters, respectively, and σ2 contains four real parameters,
therefore, σ contains ten independent real parameters.
It is clear that σ is a positive real symmetric matrix.
All the known families of Gaussian beams are subsets
of the beam described by Eq. (2). (a) If σxy′ 6= 0 and
σyx′ 6= 0, and these three matrices σ1, σ2, and σ4 have
different principal axes (the axes along which the matri-
ces are diagonal), the beam is a general astigmatic beam;
(b) If σxy′ = σyx′ = 0, and the two matrices σ1 and σ4

have the same principal axes and are aligned (or rotated)
with respect to the laboratory axes x and y, the beam is
an aligned simple astigmatic (rotated simple astigmatic)
beam; and (c) If σxy′ = σyx′ = 0, and the two matrices
σ1 and σ4 are proportional to the identity matrix, the
beam is stigmatic and has rotational symmetry.

At the conventional level of ray optics, a first-order
optical system changes the ray parameters by the simple
transformation[15]

[X X ′]To =
[

A B
C D

]
[X X ′]Ti , (3)

where the subindices ‘o’ and ‘i’ variables refer to the out-

put and input planes, respectively, and S =
[

A B
C D

]

is the ray-transfer matrix that must satisfy

detS = 1, (4)

A, B, C, and D are all 2 × 2 sub-matrices of the ray-
transfer matrix S.

We further analyze the beam behavior in the phase
space framework. Since [X X ′]Ti and [X X ′]To denote the
phase representative point vectors corresponding to the
input and output planes, respectively, Eq. (3) relates the
output phase representative point vector to the input one
and the ABCD sub-matrices. From Eq. (1), the phase
super-ellipsoid corresponding to the input plane is

[X X ′]iσ−1
i [X X ′]Ti = 1. (5)

Equation (5) is equivalent to

[X X ′]i

[
A B
C D

]T
([

A B
C D

]T
)−1

×σ−1
i

[
A B
C D

]−1 [
A B
C D

]
[X X ′]Ti = 1,

i.e.,

[[
A B
C D

]
[X X ′]Ti

]T
[[

A B
C D

]
σi

[
A B
C D

]T
]−1

×
[[

A B
C D

]
[X X ′]Ti

]
= 1.

With Eq. (3), We may write the phase super-ellipsoid
corresponding to the output plane as

[X X ′]oσ−1
o [X X ′]To = 1, (6)

therefore

σo =
[

A B
C D

]
σi

[
A B
C D

]T

= SσiS
T , (7)

which is the generalized phase space beam matrix trans-
formation law of the beam, where σi and σo represent
the phase space beam matrices corresponding to the in-
put and output planes, respectively. The effect of a first-
order system is to transfer the beam matrix σi into beam
matrix σo via σo = SσiS

T in terms of phase space model.
Since σi is positive real symmetric matrix, so is also σo.
For the case of GSM beam, we recall that Wigner func-
tion is nothing but the phase representative points den-
sity function of the phase space (X, X ′), it is easy to
see that σ is the 4 × 4 real symmetric variance matrix
by using second-moments method. As a consequence we
have σW,o = SσW,iS

T from Eq. (7) (where the subindex
‘W’ stands for the variance matrix of second-moments
of Wigner distribution), which is consistent with that
of second-moments theory[4−11]. But we think that the
phase space description technique is a more direct ap-
proach because the essentials of the problem under this
consideration are much clearer. Once the σ-matrix is cal-
culated along with optical system, all the information of
the beam propagation can be obtained.

We emphasize that some additional information can be
obtained from beam matrix σ. Firstly, let’s begin with
the explanation and analysis of 2D Gaussian beam (one
transversal dimension x, and one axial dimension z, we
call it ideal beam). Typically, the beam behavior for the
phase plane (x, x′) can be described by a 2D phase ellipse
that defined by an associated 2× 2 real matrix

σ =
[

σxx σxx′

σxx′ σx′x′

]
. (8)

Liouville’s theorem states that the area enclosing the
representative points of the beam in this phase plane re-
mains constant

Ax = Ap,x = π(detσ)1/2 = π
√

σxxσx′x′ − σ2
xx′

= π
√

σ0xxσ0x′x′ = λ, (9)

where λ is the wavelength of Gaussian beam, Ap,x is
phase area of ideal beam, σ0xx and σ0x′x′ represent the
beam waist width and the divergence angle in the far
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field, respectively. On the other hand, the beam propa-
gation factor M2 is

M2 =
π

λ

√
σ0xxσ0x′x′ =

Ax

Ap,x
= 1, (10)

or

σxxσx′x′ − σxx′
2 =

(
λ

π
M2

)2

. (11)

Remarkably, we notice, from Eq. (10), that the beam
propagation factor M2 characterizes the ratio of phase
area of Gaussian beam to that of ideal beam, this means
that the phase area of Gaussian beam is the minimum
value.

Now, we concentrate on the explanation and analysis
of a 3D general astigmatic Gaussian beam that defined
by Eq. (2), the width and the divergence angle become
generalized parameters that defined by 2 × 2 matrices,
such as σ1 and σ4, the extension of the formalism of Eq.
(11) to the 3D case requires the definition of a generalized
beam propagation factor matrix as

σ1σ4 − σ2
2 =

(
λ

π
M2

)2

, (12)

M2 =
[

M2
xx M2

xy

M2
xy M2

yy

]
. (13)

The volume of the 4D phase super-ellipsoid, according
to Liouville, is an invariant, it follows

A =
π2

2

√
detσ = C. (14)

Thus, the overall beam propagation factor is defined by

M4
eff =

A

Ap
=

√
detσ√
detσp

= (
π

λ
)2
√

detσ, (15)

where σp is generalized beam matrix of ideal beam corre-
sponding to real general astigmatic Gaussian beam given
by

σp =
[

σp1 σp2

σp3 σp4

]
,

σp1 =
[

σxx 0
0 σyy

]
, σp2 =

[
σxx′ 0
0 σyy′

]
,

σp3 =
[

σxx′ 0
0 σyy′

]
, σp4 =

[
σx′x′ 0

0 σy′y′

]
, (16)

with the assumption of symmetric conditions σxx = σyy,
σx′x′ = σy′y′ and σxx′ = σyy′ . Moreover, it is easy to see,
from Eqs. (7) and (12), that TrM4 is also an invariant,
which characterizes the beam intrinsic astigmatism given
by

J = (
π

λ
)2

[
(σxxσx′x′ − σ2

xx′) + (σyyσy′y′ − σ2
yy′)

+2(σxyσx′y′ − σxy′σyx′)
]
. (17)

Consequently, we have

J = M4
xx + M4

yy +
2π2

λ2
(σxyσx′y′ − σxy′σyx′). (18)

It is clear that, in general, M2
xx and M2

yy are not in-
variants of projection. This is in agreement with Liou-
ville’s theorem that the area enclosing the representative
points in the (x, x′) phase plane is not conserved dur-
ing the beam propagation, so is also in the (y, y′) phase
plane. These results support that M2 has provided a
figure for comparing different types beams with respect
to the ideal beam (the Gaussian beam) and show that
M2 value is a ratio of phase area of real beam to that of
ideal beam from the statistical non-wave viewpoint.

In addition, the above picture of phase space analy-
sis allows us to investigate qualitatively the properties
of the FRT[16,17] of general astigmatic Gaussian beams.
For simplicity, we consider 2D elliptical Gaussian beam
(EGB) through optical system for performing the FRT
(one-lens system or two-lens system). The propagation
of EGB associated with two spatial dimensions is inde-
pendent, thus we can study in each dimension of the 2D
phase space. According to phase space formulation Eq.
(7), the effect of FRT optical system is to transfer phase
ellipse σi into σo, i.e., the beam is represented by an
ellipse in each phase plane corresponding to each trans-
verse direction in the output plane. By rotating phase
plane coordinate system with angle ϕ, we can find that
the dependence of the beam width on ϕ is periodic, and
the period is π, so is also the beam divergence angle. So
we can conclude that the dependence of beam width and
beam divergence angle of the EGB on the fractional or-
der p of the FRT are periodic, with a period of 2.

In conclusion, general astigmatic Gaussian beam can be
represented by a 4D phase super-ellipsoid that defined
by an associated real 4 × 4 matrix in terms of phase
space model, and the transformation formula of the
phase super-ellipsoid of the beam passing through a first-
order optical system is derived, this formula recovers the
second-moments transformation law by using the method
of the Wigner distribution. More specifically, from this
point of phase space view, the beam propagation factor
M2 value is proved to be a ratio of phase area of real
beam to that of ideal beam, also a novel approach for a
qualitative examination of the properties of FRT for the
beam is provided. Finally, we stress that this geometrical
scenario does not offer any advantage in terms of compu-
tational efficiency. Apart from its undeniable simplicity
and beauty, its benefits lie in gaining insights into the
qualitative behavior of the beam evolution.
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baoxin.chen@163.com.
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